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ABSTRACT 

Let {Sn, n = O, 1, 2 . . . .  } be a random walk (S~ being the nth partial sum of 
a sequence of independent, identically distributed, random variables) with 
values in Eu, the d-dimensional integer lattice. Let f .  = Prob ($1 # 0 ..... 
Sn_ 1 ~ 0, Sn = 0 [ So = 0}. The random walk is said to be transient if 
p = 1 - Z~°= 1 fk > 0 and strongly transient if E~= 1 Zk~ n + 1 fk < co. Let R, = 
cardinality of the set {So, $1 ..... S.}. It is shown that for a strongly transient 
random walk with p < 1, the distribution of JR. -np] /ax/n  converges to the 
normal distribution with mean 0 and variance 1 as n tends to infinity, where 

is an appropriate positive constant. The other main result concerns the 
"capacity" of {So ..... S,}. For a finite set A in Ed, let C ( A ) =  Z ~ a  
P r o b { S . ¢ A , n > l [ S 0 = x }  be the capacity of A. A strong law for 
C{So, ..., S.) is proved for a transient random walk, and some related 
questions are also considered. 

0. Introduction. By a random walk we mean  a stochastic process(S~, n =0 ,1 , . . . )  

which assumes its values in the d-dimensional  space Ed o f  integer lattice points,  

such tha t  So = 0 and  the increments  Xk = S k -  Sk-1, k = 1 ,2 , . . .  const i tute a 
sequence of  independent  identically distr ibuted r a n d o m  variables.  

Le t  R ,  be the cardinal i ty  o f  the r a n d o m  set {So, $1, "",  S~}. This  r a n d o m  variable 

was studied by Dvore tzky  and  Erd6s [1].  By simple r a n d o m  walk in d d imensions  
is mean t  the r a n d o m  walk which moves  f rom the origin to any o f  its 2d neighbors  

with probabi l i ty  (2d) -1.  Fo r  such r a n d o m  walks it was shown in 1-1] tha t  

R,  ~ E[R,] when d _~ 2, where El-" ] is the expecta t ion opera tor .  In  l-3] Spitzer 

showed how the ergodic theorem can be used to prove  tha t  for  a rb i t ra ry  r a n d o m  

walk R,/n ~ p, where p = P[S~ ~ O, $2 ~ 0, . . . ] .  ( In  the t ransient  case this 
includes the Dvoretzky-Erd~Ss result, bu t  in the more  difficult case of  2-dimensional  

s imple r a n d o m  walk more  refined results are ob ta ined  in l-l]). The  first p rob lem 

considered by us is tha t  o f  a l imit ing dis t r ibut ion for  Rn, with suitable normal i -  

zat ion.  

Let  f~ = P[SI ~ 0,$2 ~ 0, " ' , S , - 1  ~ 0,Sn = 0]. I t  is usual to call a r a n d o m  

walk transient i f  ~o=  1 fk < 1. Let  I", = ~_ -~+  1 fk, n = 0, 1, . . . .  Fol lowing 
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[21 the random walk will be called strongly transient if  ~°= o rk < o0. We let 
t,= ~,~=,+ 1 rk. We are obliged to Professor Port for pointing out the relevance of  
strong transience in the present context. In section 1 it is proved that in the 

strongly transient case p ~ 1 implies that ( R , -  pn)/x/n asymptotically has 
a non-degenerate normal distribution. Since the assumption of  strong trans- 

ience entails a considerable amount of  asymptotic independence for the sequence 
of  differences (R,+ 1 - R,) the conclusion is hardly surprising. However, none of  
the numerous limit theorems for dependent random variables now in the literature 
seems to serve to give an easy proof  of our result. 

Occasionally it will be useful to consider the random walk started at a point x 
which may be different from 0. In that case the probability of an event will be 

denoted by P x [ ' l  instead of  the ordinary P [ . ] ,  e.g. P [ S 0 = 0 ]  = 1 and 
Px[So = x] = 1. Corresponding to any transient random walk there is a capacity 
C( • ). To define this first introduce 

~ ( A ) =  { ~ x [ S ~ A ,  S2(EA,...], x e A  

, x (~A,  

the probability of escaping from A starting at x, then set C(A) = ~x~aq~(A).  
For  an extensive discussion see [3]. In Section 2 we prove a strong law for 
(7, = C({So, $1 , ' " ,  S,}) and discuss some related questions. 

If  B is an event the indicator of  B, denoted by IB, is the function such that 
IB((.O ) ---- 1 (0) if  co eB(o9 ~B). 

1. Central limit theorem for R,. Let Zk be the indicator of  [Sk~Sk-1, 
S k ~ - 2 , " ' , S k  ~ 01, so that Zk equals 1 if the random walk visits a new point 
at time k, 0 otherwise. Then 

R, = ~ Zk. 
k = 0  

Reversing the time direction of the path (So, S1,..',S,) one sees that P IZ ,  = 1] 
= P[S1 ~ 0,$2 ~ 0, . . . ,S,  ~ 0], so that Z,  has the same distribution as Wo", the 

indicator of  the event [not returning to 0 by time n.J. More generally, if W] is the 

indicator of  [Sj+t  ~ Sj, Sj+2 ~ S j , . . . , S , ~  S~] one sees that (Z,,Z,_~,..., 
ZI,Zo) has the same distribution as (W~,W~,...,W~_t, W~). This observation 

was made in [11 , and it will serve as well below. 

Let p~ = P[Zj = 1], Psk = P[Zi = 1,ZR = 11. Note that as j ~ o% p ~ p .  Since 
2 be the variance of R,. We pj = P[W~o = 1], p = P[S~ ~ 0, i = 1,2, . . . ] .  Let a,  

shall write a, .-~ b, to mean that a,/b, --* 1 as n ~ .... 

LEMMA. Let (S,) be strongly transient, p < 1. Then there exists a positive 
constant tr 2 such that tr2, ,~ a2n as n --* ~ .  
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Proof. Evidently 

n--1 

2 ~ Pk(1 p,)+2 • ~ (P~k--PJPk) (1.1) tr, = - 
k=O j = o  k = j + l  

and since 

(1.2) Z pk(1 -- Pk) ~ p(1 -- p)n 
k=O 

only the last term in (1.1) needs examination. 
For j < k one obtains 

p~k=pjpk_j - -P[Wko - ~ =  1, wk_ j=  1, Wo~= 0] 

so that on setting 

ark = PEW~o-J= 1, Wk_~= 1, Wok=0] 

the second term on the right side of (1.1) reduces to two times 

n k - 1  

x (p,pk-,- x x 
j=O k = j + l  k = l  j=O 

Since 

PJ = P + rs 

one obtains 

1=o k=j+ l  / = 0  k=j+l  

p ~ r i -  r ,,~Pto n. 
j = o  i=1 i = j + l  

It will be shown that there exists a constant a such that 

~_~ ajk ,'~ an  
k=O j=O 

by proving that 

(1.3) 
k 

~, a j k . . . -*a<oo  a s  ---, oo 
j = 0  

and the above relations substituted into (1.1) imply 

2 (1.4) ~. ,~ (p(1 - p) + 2(pt o - a))n. 

Let Wi ~ = lim,-~oo W~. To prove (1.3) write 

375 



376 N. JAIN AND S. OREY Israel J. Math., 

k k k 

(1.5) X aj,k = Z ak-j,k = Z P[WJo ---- 1, W?=  1, Wo k -~- O] 
j=o j=o j=o 

X P[Wio=l,W~°=l,W~ =O]=a, 
j=O 

where the limit is taken as k -~ ¢c and the justification of the limit assertion follows 
from the dominated convergence theorem using the evident fact that ak_y, k < rj. 
This proves (1.4). It must now be shown that the coefficient of n in (1.4) is positive. 
In (1.5) there is an explicit expression for a, and we claim thati t  satisfies 

oo QO 

(1.6) ~, P[W;= 1, W f  = 1, W~ = O] = • P[W(/= 1, W~ -- 0]. 
j = O  j = O  

• P [ W ? =  11Wo / = 1, Wo~°= 0] 
oo 

<- Z P[Wj = 1, W~ ° = 0 ]P[W? = 1] = top 
j = 0  

and it is only the inequality which is not evident. The desired inequality will be 
justified if  it is shown that for each], P[W]°= 11Wo j --- 1, W~ = 0] =< P[W~ ° = 1], 
and this will follow if it can be shown that for every x different from 0, P~ [never 
returning to x[0  is visited some time] < P~ [never returning to x]. Let R = 
[returning to x some time], V = [visiting 0 some time], and let V c be the comple- 
ment of V. The desired inequality is equivalent to P~,[R[ V] ~ P~[R l V']. To prove 
this let Ro = Ix is revisited some time but 0 is not visited before the first return 
to x], R~ = R - Ro. The desired inequality then follows from 

P~[Vc]Px[R(~ V] = Px[VC](P~[Ro]P~[V] + P~[R1]) 

>= Px[V]P~[Ro]P~,[V c] = P~[V]P~[R ~ Vc]. 

TR~OI~EM 1. Let (S,) be strongly transient, p < 1. Then the distribution of 
( R , -  np)/a ~/n converges to the normal distribution with mean O, variance 1. 

Proof. Given positive integers m', m", m = m' + m" let Ah = {j:(h - 1)m 
<=j < hm}, h = 1,2, . . . .  Let A~ consist of the first m' members of A~, and let 
A~ = A h -  A~ consist of the remaining m" elements of Ah. Write In]m] for the 
greatest integer in n/m. Let D. = k) {Ah: 1 < h < [n/mJ}, D: = L) (A~': 1 -<_ h 

_< In/m]}, D~"= {]:minim] <=j <= n}. 
Now random variables U~, V~ will be introduced, i = 0 ,1 , . . . .  I f  i e Ah, let U~, 

be the indicator of [S~ ~ S~_ 1, S~ ~ $i- 2 , ' " ,  Si ~ S(~_ 1)m] and let V i = Ui - Z~. 
Note that U~ and V~ depend on m' and m", and that V~ is also an indicator. It is 
possible to choose m' and m" as functions of n in such a manner that they tend 
to infinity with n and the following conditions are satisfied: 
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(1.7) nl/2tm,/m -~ 0 

(1.8) m/n 1/2 ~ 0 

(1.9) m'/m ~ O. 

Suppose ie Ah, or more specifically 

i = (h - 1)m + j ,  0 _-_6 j < m. 

3T/ 

Then PFVi = 1] < rj and therefore 

[n/m] In~m] 
Z Y_, E[v,] < £ < t . , [ , l , , ] .  

h = l  / c A n  h = l  J=m' 

Thus for any e > 0 

en'12P[ ~, ~>en 112] <= Z E[V[l<=En/m]tm , 
ieD: i eD 

and using (1.7) one obtains that as n --* 

(1.10) p[n-1/2 v~ g~>=e] <=e-l(nl/2/m)tm,._+O. 
l e D "  

Observe now that 

I Z (u,-E[vJ)= E Z(u/-EEv,]) =Z xnh (1.11) ~/n i ~o'~D" h=1 i~A. h=i 

is the sum of In~m] independent and identically distributed random variables. 

The sum has mean 0 and by the Lemma the variance of the sum tends to I as 

n ~ oo. The Lindeberg condition for the central limit theorem is that for every 

e>O 

[n/m] fl (1.12) Z X2-~O as n ~  oo. 
h = l  Xnh[_~ ~ 

Now [Xnh[ <= m/(ax/n), so that condition (1.8)insures the truth of (1.12) and so 
the sums in (1.11)asymptotically have a normal distribution with mean 0, variance 
1. It follows from the Lemma that the sum ~ ~9;,(U~ - E[U~-[) has a variance 
asymptotically equal to na2m'/m. By (1.9) this variance is then o(n) and so 
n- ln~ , i~v , (U  i -E[Ui-[ ) converges to 0 in probability, and one may conclude 
that the distribution of (ax/n)-  1 ~-,i ~o : (U i -  E[Ui-D converges to the normal 
with mean 0, variance 1. In view of (1.10) the same conclusion holds for the 
distribution of the sum (ax/n)-  ~ ~,~ ~DT,(Z~ - E(Z/)]. It only remains to verify that 
n -  1/2 Ei ED~"(Zi- ECZi]) and n-~/2 ~i  ~ o~ ( Z i -  E[ZJ)  converge to 0 in probability. 
In view of (1.8) and the fact that D" contains at most m indices this is evident for 
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the first sum. Proceeding as in the second paragraph of the proof of the Lemma 
one obtains 

n - - J  

(Pjk -- PjPk) <- P/ ~ ri ~ Pdo 
k = j + l  i = l  

so that the variance of ~ ~o/Z~ is bounded by some constant times the number 
of terms in D'~, that is, it is O(nm'/m), and hence o(n) by (1.9), which sutfices for 
our purpose. 

If  the random walk has mean 0 and finite second moment, then it is strongly 
transient if and only if its genuine dimension is greater than or equal to 5. Thus 
Theorem 1 does not apply if, for example, the genuine dimension is 3. However, 
using these methods and the crude estimate for the variance of R,  that is given 
in [1], we can show that for ~ > 2/3, and e > 0, 

as n--.} oo. 

2. Strong law for C.. Corresponding to any transicnt random walk {Si) there 

is a capacity C(') as explained in the introduction. Let C,=C({So, SD ...,S.}). 
Let Zk have the same significance as above and set Z,,k = Zk" ~Psk({So, SD'", Sn}). 
Thcn C, = ]~,=o Z,,k. 

In [3"] an ergodic theorem was used to obtain a strong law for R.; we employ 

it hcrc to derive a strong law for (7.. 

Let e,,k = E[Z.,k]. For fixed k, Z,,k decreases as n increases and so as n approaches 
infinity e,,k dccrcascs to e~. For j < k, Z,,# has the same distribution as 

I t s . ~ s . _ , , s . ¢ s . _ 2 , ' " ,  S.*S._j]Ws.({Sk-#,Sk-i+X,'",S.+k-j}) 

and this last quantity is greater than or equal to Z.+~_j, k. Hence e.,j _> e.+k-i.k 
and therefore ej > ek and as n approaches infinity e. decreases to a limit e=. 

The random walk {Si} takes its values in the d-dimensional space of the integer 
lattice points Ea. Introduce the probability space 

( a , ~ , P )  = rI (a,, ~,,P~) 
-- oo< i <  oo 

where ~')i ~ Ed, ~ i  consists of all subsets of Ed, and Pi(B) = P [$1 e B]. The 
elements of f] are doubly-infinite sequences, co = (xi), - oo < i < oo. The shift 
T is defined by T(xi) = (y~), Yi = x~+l. For co= (xi) let 

So(cO) = 0, S.(co) = x l  + x2 + ""  + x . ,  S_. (co)  = - (Xo + x l  + " "  + x - . + 0 ,  

n = 1,2, . . - .  

This gives rise to a process with stationary independent increments and (So, $1," ')  
can be taken to be the original random walk. 
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Let 

z = v = V o( { . . .  s_,So, S,,...}) 

and let W = Z Y, 
The following two relations are easily checked: 

(2.1) lim l (em, + e m 2  "-}- " "  a t- e m m  ) = eoo 
m ~ OO lTl 

(2.2) E[W] = eo~. 

The ergodic theorem applies to give 

lim 1 ~ W(Tkog) = E[W] = eoo 
. - ~oo  n k=O 

with probability one. Since W(Tk(.o) <~ Zn,k((_O) it follows that 

(2.3) lira inf 1 ~ Znk > eoo. 
n--* oo n k =  l 

To obtain an inequalityin the opposite direction let m be a positiveinteger and set 
c(hm)=c({Smh, Smh+l,"',Sm(h+l)_~}). Observe that the C(h m), h = 0 , 1 , - ' ,  are 
independent and identically distributed, so the Kolmogorov strong law gives as 
n ---~ o o  

1 In~m] + 1 1 in-  1 

- -  E C~ m ) ~ L E E C ( o - ) ] - - -  E emi 
n h = O  m m i = o  

with probability one. The term on the left dominates n- lC, ,  and applying (2.1) 
to the term on the right gives 

(2.4) lira sup n - l C ,  < eoo. 
n--~ O0 

Together (2.3) and (2.4) imply 

THEOREM 2. As n ~ 0% n-  lC, ~ e~ with probability one. 

It becomes of interest to know when eoo > 0. Call a subset A of the state space 
recurrent if P[Si ~ A for infinitely many i] = 1. The proofs of  the following facts 
are easy: 

(i) eoo=0  is equivalent to E Y = O  and also to {... S-1,  So, S1,".} being 
a recurrent set with probability 1. 

(ii) For random walk with mean 0 and finite variance the condition 
{... S-1,So,  S1, ".'} recurrent with probability one is equivalent to {So, S1," '}  
recurrent with probability one and also to {... S_ l, So} recurrent with probability 
one. 
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(iii) Random walk with mean 0, finite variance is strongly transient if and only 
if it is genuinely d-dimensional, with d > 5. 

(iv) For strongly transient random walk with mean 0 and finite variance 

e~o > 0. 
Finally a converse to (iv) will be established 

(v) For random walk with mean 0, and finite variance in less than or equal 
to 4 dimensions coo = 0. 

Proof. It suffices to consider the 4-dimensional case. Let Bp= {x:[x[ < p}. 
Then C(Bp) = 0(p 2) as p ~ or. Indeed for simple random walk in 4 dimension 
C(Bp) ..~ cp 2 for a positive c. Since for arbitrary 4-dimensional random walk with 
mean 0, finite variance there exists a constant c 1 such that C(B) < c 1 (capacity 
of B with respect to simple random walk) (see Spitzer [3], p. 321), it follows that 
C(Bp) = 0(p2). However for any e > 0, P [supk_<, ]Sk [< c x/n] is bounded away 
from 0. Hence P[Cn ___- en] is bounded away from 0, and this is compatible with 
Theorem 2 only if coo = 0. 
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